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Microlensing Peculiarities

• Microlensing planet community is 
comparatively small.

• General consensus on forward directions.
• Two (and only two) paths forward

– Ground based, 1-5 years, ~$10-20M
• Frequency of  planets >M⊕

 

beyond the snow line. 

– Space based, 5-10 years, ~$300M
• Complete census of planets with mass greater than 

Mars and a > 0.5 AU, including habitable planets.





Beyond the snow line:
• Location of giant planet formation (and our giant planets).
• ‘Failed Jupiters’
• Source of water

Ground-based µlensing surveys probe planets with M>M⊕

 beyond the snow-line.



A space-based survey will provide a complete census of 
planetary systems with mass greater than Mars and a>0.5 AU 

(from 0 to ∞ with Kepler), including habitable planets.



Detecting Planets
Primary event:
• Smooth, symmetric
• Typically 20 days
Planetary perturbation to 

images
• Short-timescale bump
• Measure:

– Projected Separation
– Mass Ratio

t p = q1/2tE ≈ 1 day 
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Microlensing is directly sensitive to 
planet mass

• Works by perturbing 
images 

• Does not require light 
from the lens or planet.

• Sensitive to planets in 
the disk and bulge with 
DOL =1-8 kpc

• Most sensitive to planets 
near the Einstein radius

• Sensitive to wide or 
free-floating planets

• Not sensitive to very 
close planets

Yes

Yes!

No



Very Low Mass Planets

• Magnitude depends on 
separation of planet from 
image.

• Duration depends on mass.

• Signals get rarer and briefer.
• Detection Probability 

~ few %
• Large (~10%) signals for 

low-mass (Earth-mass) 
planets

Signal magnitude is independent of planet mass.

t p = q1/2tE ≈ 2 hrs 
M p

M°Ú

⎛

⎝
⎜

⎞

⎠
⎟

1/2



How Low Can We Go?
• Limited by Source Size

θE ≈ μas
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Mars-mass planets detectable 
if solar-type sources can be 

monitored!
(Bennett & Rhie 1996)



Sensitivity Depends Weakly on Host Mass

Sensitive to planets 
around:

• Main-sequence stars 
with M < M

• Brown dwarfs

• Remnants



Microlensing Strengths
• Peak sensitivity beyond the snow line.

– 50-100K
• Sensitivity down to very low-mass planets.

– Mass greater than that of ~10% Mars.
• Sensitivity to long-period and free-floating planets.

– 0.5 AU - ∞
• Sensitivity to planets over a wide range of  host masses.

– M < M
• Sensitivity to planets throughout the Galaxy.

– 1-8 kpc
• Sensitivity to multiple-planet systems. 



Commonly heard complaints…
• But you don’t know anything about the star, orbits, etc!
— Typically can measure host star and planet masses to ~10-20%.
— In some special cases can learn something about the orbit.

• But the systems are so far away and faint!
— Sufficiently bright to measure flux, color, and in some cases get 

spectra.

• But you only see it once!
— Signals are large and unambiguous.
— Demographics of planetary systems.



First Four 
Detections

Two Jovian-mass planets
Two Neptune-mass planets

OGLE-2005-BLG-390
(Beaulieu et al 2006)

M p ~ 5.5Mß] ,   r ~ 2.6AU
 M* ~ 0.22M°—,   DOL ~ 6.6kpc

OGLE-2004-BLG-235
MOA-2004-BLG-53

(Bond et al 2004)

 M p ≈ 2.5M J,   r ≈ 4.3AU

 M* ~ 0.65M°—,   DOL ~ 6.5kpc

OGLE-2005-BLG-071
(Udalski et al 2005)

 M p ~ 3.5M J,   r ~ 3.6AU

 M * ~ 0.46M°—,   DOL ~ 3.3 kpc

OGLE-2005-BLG-169
(Gould et al 2006)

M p ~ 13Mß] ,   r ~ 3.5AU

M* = 0.5M°—,   DOL = 2.7kpc



Cool Neptunes Are Common

Two low-mass detections imply:

~37% of stars have Neptunes between 1.6-4.3 AU
(16-69% at 90% confidence)

dN/dloga ~ 1 at ~3 AU (0.4-1.6 at 90%)
dN/dloga ~ 0.3 at ~0.15 AU (HARPS)

Also:

Cool Neptunes are more common than cool Jupiters



Multiple System

High-magnification Event, monitored by μFUN, OGLE, MOA
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• High-magnification 
Event
– μFUN, OGLE, MOA

• Must include two 
planets, finite source, 
orbital motion, and 
parallax

• Yields full star and 
planet masses, 
information on orbital 
speed of Saturn and 
inclination!



A ~0.5M late K-dwarf at ~1.5 kpc

M = 0.50 ± 0.05M°—

Dl ≅1.49 ± 0.13 kpc

rE ≅ 2.76 AU~

Parallax

θE ≅1.48 mas

Finite
Source

AO Imaging



The OGLE-2006-BLG-109L Planetary System

Planet b:
Mass = 0.71 ±

 
0.08 MJup

Semimajor Axis = 2.3 ±
 

0.2 AU

Planet c:
Mass = 0.27 ±

 
0.03 MJup = 0.90 MSat

Semimajor Axis = 4.6 ±
 

0.5 AU



Analog of Jupiter/Saturn



Implications for Frequency of Systems

(Udalski et al. 2005) (Bond et al. 2004)



The Most Massive M Dwarf Planet?

 M = 0.46 ± 0.04M°—

Dl = 3.3± 0.4 kpc

vLSR =103±14 km s-1

 m = 3.5 ± 0.3M Jup

r⊥ = 3.6 ± 0.2 AU

Teq ~ 50K
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(Dong et al 2008)



More on the way…

• Five or six additional planets in 2007.
– Lowest mass planet around lowest mass host (Bennett 

et al, submitted).
– Jupiter-mass planet.
– Another multiple planet system.

• 2008 season underway.
– Jupiter-mass planet found two weeks ago.

• Can expect ~half a dozen planets per year.



Current High-Magnification Event

Peak at ~UT 20:30 (~1:30 PDT), magnification >1400
Sensitive to Earth-mass planets near the Einstein ring.



What’s Next?

• Current setup (alert/follow-up) saturated
– Nearly all of the useable bulge monitored
– Many events cannot be monitored
– Monitoring one event at a time too inefficient

• A new strategy
– Dispense with alert/follow-up
– Simultaneously detect and monitor microlensing 

events



What is Required?

• Event Rate
– Primary Event Rate

– Detection Probability

– Detections Per Year
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What is Required?

Detecting the Perturbations from Earth-mass Planets
• Sampling rate ~ 10 minutes

• Photometric Accuracy ~ 1% at I~21
– Signal Magnitude

– Photometric Uncertainty

tE , p =2hrs
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NextGen μLensing Survey

• Requirements to detect ~10 Earth-mass planets 
per year:

– Monitor ~10 square degrees of the Galactic bulge 
continuously with ~10 minute sampling using 1-2m 
class telescopes, distributed longitudinally throughout 
the southern hemisphere.

– Large FOV (2-4 square degree) cameras needed.



Expected Results

A next-generation ground-based µlensing survey can test 
planet formation by probing planets with M>M⊕

 

beyond the 
snow-line.



Spontaneous Generation

•MOA-II (NZ, currently operating)
–1.8m telescope, 2.18 sq. degree camera

•OGLE -IV (Chile, 2010)
–1.3m telescope, upgrade to 1.4 sq. degree camera

•All that is needed is a 1-2m telescope with a large 
FOV in South Africa.

“Recommendation A. II. 1 Increase dramatically 
the efficiency of a ground-based microlensing 
network by adding a single 2 meter telescope.”



Why Space is Better

From the ground:

• MS sources severely 
blended

• Getting constraints on hosts 
is expensive

• Perturbations can be poorly 
sampled

SpaceGround

The field of microlensing event
MACHO 96-BLG-5



What can we expect from Space?

Example: Microlensing Planet Finder (Bennett PI)
•Simulations from Bennett & Rhie (2002)
•Basic results confirmed by independent simulations
•Continuous observations of 4 ×

 
0.66 sq. deg. central 

Galactic bulge fields: ~2 ×
 

108 stars
•Observations in near IR to increase sensitivity
•~15,000 events in 4 seasons



Simulated Planetary Light Curves

• Exposures every 
10-15 minutes 

• Strong signals

• Unambiguous 
information

• Moons detectable! 
(1.6 lunar masses)

Bennett & Rhie (2002)



Wide Range of Separations



Habitable Planets

•Dozens of Earth-mass habitable planets
•Complements Kepler.



Free Floating Planets

Planet formation theories generically predict many free-floating planets.



Lens Detection Provides Accurate 
Mass Estimate

• Lens will be detected for the majority of main-sequence lenses.

• Host star masses will be measured to 10% for half of the events.

• Projected separations will be measured to 5% for half of the events.
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Planet Detection Sensitivity
• Sensitivity to all Solar System 

planet analogs except Mercury.
• Demographics of planetary 

systems - tests planet formation 
theories.

• Most sensitive technique for a ≥

 0.5 AU.
• Good sensitivity to “outer” 

habitable zone (Mars-like 
orbits) where detection by 
imaging is easiest.

• Complementary to Kepler.
• Assumes ≥

 

9σ

 

detection 
threshold.

• Can find moons and free 
floating planets. Updated from  Bennett & Rhie (2002) ApJ 574, 985



“Recommendation B. II. 2 Without impacting 
the launch schedule of the astrometric 
mission cited above*, launch a Discovery- 
class space-based microlensing mission to 
determine the statistics of planetary mass 
and the separation of planets from their 
host stars as a function of stellar type and 
location in the galaxy, and to derive η⊕

 over a very large sample.

* “Recommendation B. I. a. 1 Launch and operate a 
space based astrometric mission capable of 
detecting planets down to the mass of the Earth 
around 60-100 nearby stars…”



Technology

• Ground-based 1-2m, Wide FOV Telescope 
– Several very similar telescopes already operating

• MOA-II
• Pan-STARRS-1 - $20M

• Space-based microlensing mission
– Requires almost no technology development.
– Can extensively leverage other missions (Spitzer, 

NextView, Ikonos, JWST)
– Can use many components that are demonstrated 

on orbit or flight qualified.



MPF Misson Design
• 1.1-m aperture consisting of a three- 

mirror anastigmat telescope feeding a 
147 Mpixel HgCdTe focal plane (35 
20482 arrays)

• The spacecraft bus is a near-identical 
copy of that used for Spitzer.

• The telescope system very similar to 
NextView commercial Earth- 
observing telescope designs. 

• Detectors developed for JWST meet 
MPFs requirements.

• All elements are at TRL 6 or better.

• Total Cost $300 (without 
launch vehicle)

Property Value Units

Launch Vehicle 7920-9.5 Delta II

Orbit Inclined GEO 28.7 degrees

Mission Lifetime 4.0 years

Telescope Aperture 1.1 meters (diam.)

Field of View 0.95x0.68 degrees

Spatial Resolution 0.240 arcsec/pixel

Pointing Stability 0.048 arcsec

Focal Plane Format 145 Megapixels

Spectral Range 600-1700 nm in 3 bands

Quantum Efficiency >75%
>55%

900-1400 nm
700-1600 nm

Dark Current <1 e-/pixel/sec

Readout Noise <30 e-/read

Photometric
Accuracy

1% or better at J=20.5

Data Rate 50.1 Mbits/sec

Table 1: Key Space Mission RequirementsMPF Mission Requirements



Dark Energy Synergy
• Space-based microlensing mission telescope requirements are very similar to the 

requirements for many proposed dark energy missions. 
• Combined dark energy/planet finding mission probably could be accomplished 

at a substantial savings.
• ADEPT, Destiny, SNAP, DUNE/SPACE/Euclid

– Wide FOV, >1.1m aperture, technical specifications appear to satisfy space-based 
microlensing survey specifications

– DUNE/SPACE/Euclid can meet all the science goals without modification to 
hardware. 

• Trade study:
– Observing time
– Pass bands
– FOV and Detectors
– Orbit
– Telemetry
– Aperture
– Optics
– Pointing



Summary
• Ground-based Next-Generation Survey:      +$10M—$20M

– Complete network with a single wide FOV 1-2m telescope in SA.
– Frequency of  planets >M⊕

 

beyond the snow line. 
– Test planet formation theories.

• Either: Space-based Microlensing Mission: +$300M + launch
– Complete census of planets with mass greater than Mars and a > 0.5 AU.
– Sensitivity to all Solar System planet analogs except Mercury.
– Demographics of planetary systems - tests planet formation theories.
– Detect “outer” habitable zone (Mars-like orbits) where detection by imaging is 

easiest.
– Can find moons and free floating planets.

• Or: Joint μlensing/Dark Energy Mission +$100M—$200M?
• Total cost to “Exoplanet Community”: $120M—$420M
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